Structural and dynamic characterization of the heterodimeric and homodimeric complexes of distamycin and 1-methylimidazole-2-carboxamide-netropsin bound to the minor groove of DNA.
نویسندگان
چکیده
NMR spectroscopy combined with molecular modeling was used to characterize a heterodimeric complex with Dst and 2-ImN bound in the minor groove of d(GCCTAACAAGG).d(CCTTGTTAGGC) (1:1:1 2-ImN.Dst.DNA complex). The imidazole-pyrrole-pyrrole ligand 2-ImN spans 5'-GTTA-3' of the TAACA.TGTTA binding site with the imidazole nitrogen specifically recognizing the guanine amino group. The Dst ligand lies along the 5'-AACA-3' sequence and complements the 2-ImN ligand in the formation of the antiparallel side-by-side heterodimeric complex. Titrations of the same site with Dst or 2-ImN alone yield homodimeric complexes (2:1 ligand.DNA) of lower stability than the 1:1:1 2-ImN.Dst.DNA complex. Dst and 2-ImN binding to d(CGCAAACTGGC).d(GCCAGTTTGCG) was also investigated. The 1:1:1 2-ImN.Dst.DNA complex is again the most stable complex with the AAACT.AGTTT site and is similar to the TAACA.TGTTA complex. No monomeric binding of either 2-ImN or Dst was observed to either site.
منابع مشابه
Binding affinities of synthetic peptides, pyridine-2-carboxamidonetropsin and 1-methylimidazole-2-carboxamidonetropsin, that form 2:1 complexes in the minor groove of double-helical DNA.
The designed peptides pyridine-2-carboxamidonetropsin (2-PyN) and 1-methylimidazole-2-carboxamidonetropsin (2-ImN) are crescent-shaped analogs of the natural products netropsin and distamycin A. 2-PyN and 2-ImN bind the 5'-TGTCA-3' sequence as antiparallel side-by-side dimers in the minor groove of DNA. The binding affinities of 2-PyN and 2-ImN to four different 5-bp sites on DNA were determine...
متن کاملAntiparallel side-by-side dimeric motif for sequence-specific recognition in the minor groove of DNA by the designed peptide 1-methylimidazole-2-carboxamide netropsin.
The designed peptide 1-methylimidazole-2-carboxamide netropsin (2-ImN) binds specifically to the sequence 5'-TGACT-3'. Direct evidence from NMR spectroscopy is presented that this synthetic ligand binds DNA as a 2:1 complex, which reveals that the structure is an antiparallel dimer in the minor groove of DNA. This is in contrast to the 1:1 complexes usually seen with most crescent-shaped minor ...
متن کاملMolecular modelling of the interaction of carbocyclic analogues of netropsin and distamycin with d(CGCGAATTCGCG)2.
A molecular mechanics and molecular dynamics approach was used to examine the structure of complexes formed between the d(CGCGAATTCGCG)2 duplex and netropsin, distamycin, and four carbocyclic analogues of netropsin and distamycin (1-4). The resulting structures of the ligand-DNA model complexes and their energetics were examined. It is predicted that the compounds 1-4 should have a decreased af...
متن کاملMolecular dynamics simulations and free energy calculations of netropsin and distamycin binding to an AAAAA DNA binding site
Molecular dynamics simulations have been performed on netropsin in two different charge states and on distamycin binding to the minor groove of the DNA duplex d(CGCGAAAAACGCG).d(CGCGTTTTTCGCG). The relative free energy of binding of the two non-covalently interacting ligands was calculated using the thermodynamic integration method and reflects the experimental result. From 2 ns simulations of ...
متن کاملMinor groove to major groove, an unusual DNA sequence-dependent change in bend directionality by a distamycin dimer.
DNA sequence-dependent conformational changes induced by the minor groove binder, distamycin, have been evaluated by polyacrylamide gel electrophoresis. The distamycin binding affinity, cooperativity, and stoichiometry with three target DNA sequences that have different sizes of alternating AT sites, ATAT, ATATA, and ATATAT, have been determined by mass spectrometry and surface plasmon resonanc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 33 10 شماره
صفحات -
تاریخ انتشار 1994